
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332717401

OnlineAirTrajClus: An Online Aircraft Trajectory Clustering for Tarmac Situation

Awareness

Conference Paper · March 2019

DOI: 10.1109/PERCOM.2019.8767400

CITATIONS

9
READS

316

6 authors, including:

Some of the authors of this publication are also working on these related projects:

RMIT Research View project

Spatio-temporal Data Analytics for Situation Awareness View project

Wei Shao

RMIT University

48 PUBLICATIONS   246 CITATIONS   

SEE PROFILE

Kyle Kai Qin

RMIT University

10 PUBLICATIONS   79 CITATIONS   

SEE PROFILE

Flora Dilys Salim

RMIT University

210 PUBLICATIONS   1,551 CITATIONS   

SEE PROFILE

Jiaman Ma

RMIT University

4 PUBLICATIONS   34 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Flora Dilys Salim on 28 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332717401_OnlineAirTrajClus_An_Online_Aircraft_Trajectory_Clustering_for_Tarmac_Situation_Awareness?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332717401_OnlineAirTrajClus_An_Online_Aircraft_Trajectory_Clustering_for_Tarmac_Situation_Awareness?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/RMIT-Research?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Spatio-temporal-Data-Analytics-for-Situation-Awareness?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Shao-27?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Shao-27?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RMIT-University?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Shao-27?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyle-Kai-Qin?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyle-Kai-Qin?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RMIT-University?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyle-Kai-Qin?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flora-Salim?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flora-Salim?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RMIT-University?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flora-Salim?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiaman-Ma-2?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiaman-Ma-2?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RMIT-University?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiaman-Ma-2?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flora-Salim?enrichId=rgreq-a68c87a534845f4f6ef68509276d82ab-XXX&enrichSource=Y292ZXJQYWdlOzMzMjcxNzQwMTtBUzo3NTI2NDc2OTA3ODA2NzJAMTU1NjQ1NjYwMTQwMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


OnlineAirTrajClus: An Online Aircraft Trajectory
Clustering for Tarmac Situation Awareness

Wei Shao
School of Science
RMIT University

Melbourne, Australia
wei.shao@rmit.edu.au

Kai Qin
School of Science
RMIT University

Melbourne, Australia
kai.qin2@rmit.edu.au

Flora D. Salim
School of Science
RMIT University

Melbourne, Australia
flora.salim@rmit.edu.au

Jiaman Ma
School of Science
RMIT University

Melbourne, Australia
jiaman.ma@rmit.edu.au

Jeffrey Chan
School of Science
RMIT University

Melbourne, Australia
jeffrey.chan@rmit.edu.au

Bradley Feest
Aerospace Systems

Northrop Grumman Corporation
Redondo Beach, USA
Bradley.Feest@ngc.com

Abstract—On-ground aircraft trajectory information plays a
key role in airport situations awareness prediction and manage-
ment. Airport administration needs to arrange and schedule the
time and order of aircraft landing and take-off events based on a
precise and real-time information of on-ground aircraft. Recently,
a large dataset of GPS-derived aircraft at airports, available from
the Federal Aviation Administration (FAA), provides researchers
with an opportunity to monitoring on-ground aircraft trajec-
tory. In this paper, we present a framework to incrementally
cluster airport aircraft trajectories based on the GPS data.
The framework consists of two steps: 1) Classifying airport
aircraft data according to spatial and temporal information.
2) Merging the similar aircraft trajectories incrementally. We
evaluate our framework experimentally using a state-of-the-art
test-bed technique, and find that it can effectively and efficiently
construct and update on-ground aircraft trajectory map.

Index Terms—On-ground aircraft, Spatio-temporal data, Tra-
jectory clustering, situation awareness

I. INTRODUCTION

Trajectory data are widely collected from various areas such
as animal migration, transportation, travelling and air traffic.
In air traffic domain, increasing amount of air traffic data
attracted substantial attention of general public and researchers
because it provides significant economical benefits for airline
industry. Federal Aviation Administrations (FAA) recorded
GPS trajectory information for each aircraft at United States
airports, which offers an opportunity to study the situational
awareness map of on-ground aircraft at the airport [1].

In the airport traffic and control system, situational aware-
ness is of paramount importance. Situational awareness map at
the airport indicates a location based map where the value of
each element describe the property of the specific coordinate

This research was supported by Northrop Grumman Corporations USA
through the funding for the project ”Spatio-temporal Analytics for Situation
Awareness in Operations”. Wei Shao is a PhD candidate supported by RMIT
Sustainable Urban Precinct Project (SUPP) research grant ”iCo2mmunity: Per-
sonal and Community Monitoring for University-wide Engagement towards
Greener, Healthier, and more Productive Living”.

[2]. The map is constructed from radars and GPS system. From
constructing such map, we can monitor ground transport and
evaluate the conditions of on-ground transport infrastructure
since situational awareness map provides a reliable and accu-
rate analytic tool for airport traffic controllers by offering them
features and indicators they require for on-ground air traffic
management and scheduling [3].

Situational awareness map can also be used to describe
the pattern of aircraft trajectory and airport complexity with
the goal of increased utilisation of airport capacities. The
significant boosting number of flights in the limited airport
space and time schedule multiplies the complexity of planning,
management, and monitoring missions, which raise the urgent
needs of relevant data analytic. In recent years, many research
work focus on air traffic flow monitoring, controlling and
scheduling [4]. However, very few researchers pay attention
to the on-ground moving vehicles and aircraft on the tarmac
(or officially called apron by FAA). It can help airport traffic
managers to recognise patterns of aircraft movement in order
to reduce traffic congestion [5] [6], and predict the anomaly
of air traffic [7]. Situational awareness map is widely used in
aerospace management to monitoring and characterise the air
traffic flow [8] [9].

Also, situational awareness map construction is a required
preprocessing step for many existing problems for traffic
control at airport such as traffic congestion and anomaly
detection. Our observations show that most aircraft departure
and landing trajectories are not the shortest or optimised.
By constructing the situational awareness map, we can ex-
tract abnormal trajectories. For example, Figure 1a shows a
trajectory for an aircraft taxiing in parking area. It shows
that this aircraft takes a long time taxiing in parking area.
Using situational awareness map, we can detect such case
and optimise the taxiing schedule. Secondly, in the parking
area, there is no any fixed or regular tarmac for aircraft. An
aircraft can go anywhere before landing and taking off, not



(a) Aircraft trajectory in the park-
ing space

(b) An regular aircraft trajectory
with different speed

(c) Two aircraft trajectories on the same runway

Fig. 1. An example of aircraft trajectory on the road and off the road.

just taxiing on the tarmac or runway. Figure 1c depicts two
landing aircraft trajectories with similar paths. In this scenario,
the routes of these aircraft are all on the runway or tarmac.
Therefore, constructing a aircraft situational awareness map
is more complicated than building a regular vehicle trajectory
map such as taxi.

In comparison to traditional methods, inferring an on-
ground aircraft trajectory map using aircraft GPS trajectories
is more challenging. Firstly, airport runways are different from
other sources of GPS data such as taxi or cars. The trajectories
of on-ground aircraft at the airport are more flexible and
uncertain because the common tarmac are much narrower than
airport runways. Second, the speeds and headings of aircraft
are more uncertain than other vehicles, because all aircraft
at airports need to follow the protocols and directions from
air traffic management systems or the traffic controllers. Also,
the span of aircraft is much larger than other vehicles. Figure
1b illustrates a regular aircraft take-off trajectory. The GPS
locations are recorded at the same time interval, but the spatial
distances between each GPS point are significantly different,
because the speed of aircraft changes rapidly in the last stage
of take-off. This leads to difficulty to estimate routes when
speed changes rapidly across a few GPS locations. Thirdly,
in comparison to common road network, airport aircraft route
networks change more rapidly. It always changes based on
the environmental factors such as wind or climate. Therefore,
batch processed-based methods are not suitable for aircraft
route network construction. An incremental learning approach
is necessary to be used to update the route network with new
aircraft trails. In summary, there is a large disparity in the

requirements for inferring situational awareness map of on-
ground aircraft from GPS data.

In this paper, we propose an on-ground aircraft trajectory
clustering framework which is incremental, low computational
cost, analytic and data-driven. This framework can create an
on-ground aircraft trajectory situational awareness map. Each
take-off and landing trajectory can have a corresponding graph
as the underlying representation of the route networks in
the map. The framework can create the map from scratch,
and update the map step-by-step with new on-ground aircraft
trajectories. Additionally, our framework does not need any
training process or much heuristic knowledge. Also, we intro-
duce a pre-classification and de-noising method to represent
the airport aircraft trajectory data, which is able to mine the
useful information from a massive amount of trajectories data.
We also propose a simple but effective approach to merge the
similar airport aircraft trajectories. This intermediate merging
method can find the central lines of trajectories incrementally.
We also employ visualisation method and some state-of-art
test-bed to evaluate our framework. Our contributions in this
paper come in three parts:
• We analyse the characteristics of aircraft trajectory data

and propose a classification approach to extract useful
route information from massive amounts of GPS trajec-
tory data.

• We define the on-ground aircraft situational awareness
map construction problem and propose an incremental
clustering approach for updating the map with new air-
craft trajectories.

• We conduct an extensive experiment on a large real-world
dataset to demonstrate the effectiveness and efficiency of
our approach in three aspects.

II. RELATED WORK

Inferring a situational awareness map using clustering meth-
ods has become a popular research topic in recent years.
GPS trajectory has been utilised in smart mobility applications
[10]–[13]. In this section, we briefly review the related work
which can be separated into two categories: points clustering
and trajectory clustering.

Points Clustering: In the early years, most researches focus
on points clustering. Edelkamp er.al. [14], in 2003, used GPS
points to refine a map by a sequence of steps, including map
segmentation, road segment clustering, noisy data removal,
road centreline generation and lane finding. This provided
heuristic information to subsequent studies. Cao and Krumm
[15] tried to cluster the GPS traces by simulating physical
attraction between them. In 2010, Agamennoni et al. [16] and
Fathi et al. [17] proposed approaches which can infer the road
maps from GPS data. It samples the nodes along the centreline
and then incrementally linked them together to yielding the
final graph. It also uses a dominant set framework to cluster
the points. Qiu and Wang [18] propose a road map inference
framework based on segmentation and grouping in 2016. The
authors use DBSCAN with orientation constrain to divide the
GPS data into clusters. The main contributions of this work



is that they develop a new cluster algorithm to generate the
point clusters and propose a Hidden Markov Model-based map
matching algorithm to build the topological relationship of the
centrelines.

Trajectories Clustering: As opposed to GPS point cluster-
ing, which focuses on neighbouring points, trajectory and sub-
trajectory clustering methods are based on route similarities.
Some studies, such as [19] [20], focus on using GPS trajecto-
ries to construct street networks and discover popular routes.
There are some other studies, such as [21], [22] and [23] mine
the patterns of trajectories to understand different movement
patterns. Wei et al. [24] proposed a framework called RICK to
construct the popular routes from uncertain trajectories. RICK
is able to construct the top-k routes which pass through the a
specific location within a certain time period. It first constructs
the regions on a graph and uses probability estimation to infer
the edges, then they infers the most popular routes by a score
function. Uduwaragoda et al. [25] extract the lanes and its
boundary from GPS data using a kernel density estimation
based method. But their method needs an existing road map
with the road centreline. Karagirgou et al. [26] proposed a
new layered map construction algorithm in 2017. The aim of
the approach is to generate one road network layer and fuse it
into one single network. The steps of this approach including
segmenting the trajectory data based on the corresponding
types of movement and constructing the topology of the road
network hierarchically. The above researches are focus on the
trajectories with certain route network. The trajectories with
uncertainty patterns are more complex. Kuijpers et al. [27]
analyse trajectories using uncertainty information. Pfoser et al.
[28], Nanni et al. [29] and Giannotti et al. [30] are studying the
trajectories of moving objects with uncertain patterns. Another
interesting work [31] takes advantage of the social media to
infer the road map. Authors use a data mining technique
and natural language processing tool to extract the spatial
information and a map of the road network.

Above works take advantages of clustering method and eval-
uate the result with many different criteria such as topology,
path completeness and other clustering evaluation metrics [32].
Our work combine both point-based clustering and trajectory
clustering solutions. It firstly clustering on-ground aircraft
trajectory incrementally.

III. OVERVIEW

In this section, we model and define the on-ground aircraft
trajectory map construction and updating problem, and outline
the solution framework.

A. Trajectory Definition

A trajectory ti ∈ T is a vector of GPS point xi, where xi
is the (GPS) point position of aircraft or vehicle at time τi.
The measurement of xi has seven features shown in Table I.
Latitude and longitude information reveals the location of the
GPS point. The timestamp is the time that the GPS point is
recorded. ID is a global identity of GPS data point. Trajectory
ID denotes the aircraft or vehicle trajectory that the GPS point

xi belongs to. The speed and heading of xi can be estimated
by the position of GPS point xi−1 and xi. See Table I for
summary of the symbols used.

TABLE I
ATTRIBUTE LIST OF GPS POINT xi

Feature Symbol Description

Latitude lati Latitude

Longitude loni Longitude

Timestamp τi UTC time when recording the GPS point xi

ID idxi The unique identity of GPS point xi

Trajectory ID t(xi) identity of trajectory where xi ∈ tid

Speed speedi The velocity of vehicle or aircraft

Heading hi The clock-wise angle between the moving
direction and the earth true north

B. Problem Definition

We define the on-ground aircraft trajectory map construction
problem as below: Given n trajectories T = {t1, t2, ...tn}, we
aim to construct a graph G = (V,E), where G is a directed
graph and V denotes the geographical location in the graph.
The edge eij ∈ E represents the possible direct paths between
vi and vj, where vi,vj ∈ V, i 6= j.

C. System Framework

Figure 2 depicts an overview of our framework, which
consists of two main components: on-ground aircraft trajectory
data preprocessing and airport aircraft route network genera-
tion.

1) Preprocessing: This component takes the aircraft tra-
jectories and performs two main tasks: 1) Trajectory data
cleaning, which aims to remove noise and, false data, and
interpolate the trajectories; 2) Trajectory data classification,
which classifies the aircraft data into four categories: parking,
patrolling, landing and take-off (details in Section IV).

2) Situational Awareness Map Generation: This compo-
nent mainly generates a situational awareness map of the
on-ground aircraft trajectory based on pre-processed GPS
trajectory points. It incrementally updates the map by adding
new trajectories to the trajectory pool one-by-one. For each
new trajectory, the part which shares the same tarmac or
runway with the existing trajectory pool will be merged into
the existing route network. The other part is then directly
added to the current trajectory pool (details in Section V).

IV. TRAJECTORY DATA PRE-PROCESSING

In this section, we describe two components: data cleaning
and trajectory classification.

A. Trajectory Data Cleaning

Raw aircraft trajectory data at airport is noisy and lacks im-
portant features such as headings and speed. Examples of noise
include aircraft GPS data that are either outside the boundaries
of the airport or reflect the trajectories data of aircraft in the



Fig. 2. Overview of the situational awareness map construction framework.

air. These are irrelevant and are filtered. We use a shape file
which is a popular geographical spatial vector data format for
geographical information software to extract airport aircraft
GPS data from raw data and calculate the speed and headings
of GPS points with the positions of xi and xi−1 [33]. Addition-
ally, the aircraft GPS points data do not contain the trajectory
ID information. We group aircraft trajectories according the
aircraft call signs and the time span to identify each GPS
point xi with a trajectory ID t(xi). Aircraft trajectory data
are complicated and nosily. Beside the simple data cleaning
method, we also adopt the method from [34]. For example,
we unify the spatial resolution and temporal resolution. We
discard many noncontinuous trajectories and ground vehicles
trajectories. We also consider about the positioning accuracy
based on radar and GPS measurement error rate to remove
the nosily points. We removed all singular points which is far
away from other GPS points. Nevertheless, GPS noise cannot
be fully filtered in our proposed method. Fortunately, it does
not significantly influence our result because the size of aircraft
is much larger than range of GPS error.

B. Trajectory Classification

Not all of airport aircraft trajectories data are useful to
construct route networks. Some trajectory data are even have
negative effect on extracting real route network from data. For
instance, parking aircraft often stay in the parking zone and
taxiing around one central location. This kind of trajectory
does not reveal any route information. It not only wastes
processing time but also mislead the airport traffic controller
if we use such trajectory to generate the map. In this paper,
we only use landing and take-off trajectories to generate the
map. The aircraft traces can be classified into four categories:
parking, patrolling, landing and take-off. We define each class
of airport aircraft trajectory using spatio-temporal information
as below:
Parking trajectory Parking trajectory tparking is a trajectory
t which only moves in a small area with the range R. Formally
speaking, ∀xi, xj ∈ tparking, the distance between the xi and
xj is less than the value R. The other condition is that the

altitude of any xi ∈ tparking is the zero, which suggests that
the trajectory is always on the ground (Here the altitude equals
to zero is not the sea level but the airport ground level).
Patrolling trajectory Patrolling trajectory tpatrollingis a tra-
jectory with movable range of motion is larger than R and the
altitude of any xi ∈ tpatrolling equal to zero.
Landing trajectory Landing trajectory tlanding starts from
the landing point of the aircraft and ends up at the parking
space.
Take-off trajectory Take-off trajectory ttakeoff is recorded
from the parking position to the take-off position.

We distinguish the landing and take-off trajectories by
following simple criteria: ∃xi ∈ t and the altitude of xi is
greater than zero. Meanwhile,

∑
i<n

2
speedi >

∑
i>n

2
speedi.

Then the t is the landing trajectory. If the
∑
i<n

2
speedi <∑

i>n
2
speedi, the t is the take-off trajectory. This method

is simple but useful for telling the difference between the
landing and take-off trajectories in reality because the speed
of a landing aircraft decreases with the time, while and that of
an take-off aircraft taking off speed increases with the time.

The functional areas we defined above are not as same as
their real function at the airport. We classify those areas into
four categories because we aim to filter useless trajectories
and use the most important trajectories to construct situation
awareness map. Therefore, we simply the functionality of these
trajectories.

V. AIRPORT SITUATIONAL AWARENESS MAP GENERATION
APPROACH

In this section, we propose an approach to constructing
the airport situational awareness map from multiple aircraft
trajectories which are generated from the pre-processing step.
We first outline the framework of the proposed incrementally-
updated approach and then describe each step in details.

A. Incremental Updating Airport Framework

1) Approach: The intuition of the incremental framework
is to expand the road network with new trajectories through



merging and sampling. This is inspired by some known
patterns of airports, as described below.

Road segment homogeneity Different aircraft trajectories
on the same road segment are usually similar spatially and
temporally. For example, the speeds and headings of GPS
points of aircraft trajectories on the same road segment are
similar within the same trajectory type, such as landing or
take-off. Hence, GPS points with similar features and closer
positions are more likely to be on the same road segment.

Road junction heterogeneity The GPS points located in
junction areas are likely to be heterogeneous in both the spatial
and temporal domains. A junction area can be viewed as a
connecting joint of several road segments. Each segment can
contain many different trajectories with different attributes.
The GPS points of the trajectories of different road segments
also differ in speed, heading and other spatial and temporal
features.

Centreline with high density Many studies claim that road
centreline have higher point densities than road edges [25],
[35], which suggests that most GPS points in the same road
segment are likely to locate around the centreline. Inspired by
this idea, we also found that the average trajectory on a given
road segment is also around its centreline.

Taking these observations into consideration, our algorithm
has three phases:

Stage 1: Classifying The algorithm starts by classifying the
GPS points of new trajectories into two categories: existing
GPS points belonging to the trajectory pool and new GPS
points that are to be added to the trajectory pool.

Stage 2: Merging and Adding In this stage, the algorithm
separately handles the two classes of GPS points generated
from Stage 1. The approach merges the similar GPS points
and adds the new points, which can explore the new route in
the map to the pool.

Stage 3: Segment Linking In the last stage, the GPS
points need to be linked as segments. We use segment lists
to represent the trajectories.

2) Algorithm Design: Algorithm 1 gives the pseudo-code
of our incremental airport map expansion algorithm. In the
initialisation stage, one of the trajectories is set as the initial
airport map or put into the trajectory pool. Then, for each
iteration of the airport map expansion (Lines 1 to 14), the
algorithm will update the airport map with new coming
trajectories. The GPS data of the new trajectories are classified
into two categories in Line 3. If the GPS point xi is similar
to points in the trajectory pool, xi is merged with its similar
points in the neighbourhood (Line 5). Otherwise, we add the
new points to the trajectory pool (Line 9). The new edges
also are generated to connect new points in the pool (Lines
7, 13). Finally, when all new trajectories have been used, the
algorithm terminates, and the graph G is returned as the map.

We define some terms in Algorithm 1 in more details as
follows:

Classify() The aim of the classifying function is to classify
the GPS points xi into ClassA and ClassB . The GPS point

Algorithm 1 Framework of Incremental Airport Map Expan-
sion
Input: Trajectory Dataset T
Output: Road network G = (V,E)

Initialisation : Select first trajectory t1 ∈ T and initialise
the trajectory pool as G← t1

1: for i = 2 to n do
2: for ∀xj ∈ ti do
3: Stage 1: Classify(xj)
4: if (xj ∈ ClassA) then
5: x?j = Merge(xj , xk ∈ Φ(xj))
6: V← V − xj ∪ xk ∈ Φ(xj)
7: E ← E − Er, Er = (xp, xq) and xp or xq ∈

xj ∪ Φ(xj)
8: else if (xj ∈ ClassB) then
9: V← xj

10: end if
11: end for
12: generate E? from xj ∈ classB with τi
13: E ← E + E?

14: end for
15: return G

xi ∈ ClassA lies on the existing map G, and the other points
that belong to ClassB belong to new road segments.

Merge() The Merge operation aims to merge the GPS point
xi in new trajectory with its similar neighbours Φ(xi). x?j
denotes the new merged GPS point and E? denote the new
generated edges between points in ClassB and map G. Er
is the new edge that connects newly merged points and other
points in map G.

B. New Trajectory GPS Points Classification

Since the trajectories of aircraft are noisy and redundant, it
is important to distinguish redundant data from new trajectory
data. Therefore, we propose a new GPS point classification
method that employs both spatial and temporal information.
The motivation and details are discussed in this section.

1) Approach: Any road segment has multiple aircraft tra-
jectories on it. Aircraft routes on a given road segment should
be similar, as the boundary and direction of each trail is
fixed. Aircraft trails are different from those of other common
vehicles, as mentioned before. In Section IV, all aircraft
trajectories were classified into four classes. For each class, air-
craft actions and trajectories are similar. For example, landing
aircraft always follow the same actions: landing on a specific
runway, taxiing along the runway and going to the parking area
according to the air traffic controllers’ instructions. For most
cases, the patterns of aircraft landing areas are similar. That
is, aircraft speeds and trails are similar when they are located
in the same road segment, which suggests that the features of
GPS points located in the same road segment will be similar.

2) Methodology: The classification approach is to check if
GPS point xi is located on existing map G. Aircraft trajectory
data is typical spatio-temporal data. It is necessary to analyse



the similarity of GPS points both spatially and temporally. In
the spatial perspective, similar GPS points should be located
in close proximity and their directions should be similar. In
the temporal perspective, speed similarities should be taken
into consideration.

We need to find the K nearest neighbours to merge in the
spatial dimension. The amount of aircraft trajectory GPS data
is huge. Therefore, a kd-tree was used in our algorithm to
search the k nearest neighbours in the spatial domain [36],
[37]. The kd-tree runs in O(M log M) time, which can rapidly
find K nearest neighbours within a short period. Additionally,
quan tree and other tree structures can be applied to the neigh-
bour search problem [38]. For each neighbour xj ∈ Φ(xi), we
use speed and heading information to check whether they are
similar in both the spatial and temporal domains. We use a
score function (Eq.1) to measure the similarity between new
GPS points xi and their neighbours.

score(xi, xj) =

∑
||xi−xj ||<R e

−∆2(hi,hj) · e−||xi−xj ||2∑
||xi−xj ||<R e

−||xi−xj ||2
(1)

where || · ||2 measures the Euclidean distance between two
GPS points, ∆ gives the angle between two headings, and R
denotes the radius of the neighbour areas.

In the temporal domain, we assume that speed of each GPS
point xi is associated with a Gaussian distribution N ∼ (µ, σ),
where µ denotes the average speed of xj ∈ Φ(xi) and σ is the
standard deviation of the GPS point speeds in the neighbour
area. The probability of xi belonging to the same segment as
other neighbouring GPS points can be calculated as follows:

Pspeed = |
∫ µ

speedi

N(µ, σ)d(speed)| (2)

Considering both spatial and temporal criteria, the final
probability of GPS point xi belong to the ClassA equals:

wj = score(xi, xj)× Pspeed (3)

C. Merge approach

In the GPS point merging step, we use a simple midpoint
method to estimate the new GPS point location. The new GPS
point is calculated by finding the centre point for the similar
neighbour GPS points. The new GPS point x?j = (lat, lon) is
calculated by the following equation

lat?j =
1

m

∑
xj∈ClassA

latj

lon?j =
1

m

∑
xj∈ClassA

lonj

(4)

where the m is the number of similar points in the Φ(xi)

D. Inferring Edge Link

The previous work sampled a large amount of GPS data
to generate new GPS points representing trajectories. The
vertices of map G were extracted from the aircraft GPS point
cloud. In this part, we aim to determine the edges E from
trajectory information. Since the temporal information τ of
each GPS point is recorded, the order information of GPS
points is confirmed. The segmentation information is only
lost after the merge-adding steps for those merged points.
As a result, it is necessary to add edges after the merging
and addtion of new points step. After the merging step, the
simplest solution is to connect new merged point with points
connected with xj ∈ Φ. After the adding step, the new
merge point replace the original points in the new trajectory.
Therefore, the edge information remains. Nevertheless, the
temporal information should is lost after merging and adding.
However, the order information of GPS points is preserved.

VI. RESULTS AND EVALUATION

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of our proposed framework.
The aircraft trajectory datasets are described firstly. Then we
evaluate our function classification methods using ground truth
extracted from aviation official website. We also evaluate
the clustering approach using both subjective criteria such as
visual analytic and object criteria such as completeness and
precision metric.

A. Los Angeles International Airport Datasets

The Los Angeles International Airport (LAX) is one of
the busiest airport in the United States. It has more than
10,000 aircraft trajectories per day. Each trajectory consists of
dozens to thousands of GPS points. The volume of trajectory
data is also extremely large, and can reach 20GB monthly
in CSV format. Fortunately, it is not necessary to employ all
existing trajectories to infer the situation awareness map at
the airport. In this case study, a small subset of trajectories
was extracted from Federal Aviation Administration (FAA)
database. We selected data from 1 August to 31 August 2016
and pre-process all data using method we motioned in the
pre-processing section.

A summary of this subset of data is given in Table II. All
data was recorded by radars and sensors at the airport and in
the aircraft.

TABLE II
OVERVIEW OF LOS ANGELES INTERNATIONAL AIRPORT

Description Value
Volume of dataset 138MB
Number of records 1080059
Number of features 10
Time span 2016-07-31 14:00:01 to 2016-08-01 13:59:59
Number of aircraft type 124
Number of callsigns 2091
Number of trajectories 2165

The number of records in Table II denotes the number of
GPS points in the dataset. The features for each record include



both aircraft GPS points and trajectory information such as
longitude, latitude, trajectory ID, time stamp and etc. It also
contains the some specific information for aircraft such as the
type of the aircraft (example: Boeing 747), the call sign of
aircraft (example, AAL2043).

B. Data Pre-processing Result

The raw dataset obtained from FAA was chaotic and noisy.
Figure 3a shows a GPS points map of raw GPS points located
in LAX area. We used the method given in Section IV to clean
and pre-process the raw data.

(a) Raw aircraft GPS points map

(b) Cleaned GPS points map (c) Cleaned trajectory map

Fig. 3. The raw data and the output trajectory data from step 1.1 in data
preprocess.

Figure 3 shows the raw and cleaned map. It contains
all GPS points on the ground. Figure 3b shows all GPS
points at the airport and Figure 3c denotes trajectories with
colours. Compared with Figure 3a, the cleaned map removes
all airborne GPS data and trajectories, which are irrelevant to
the airport route network.

Figure 3c shows that the patterns of different trajectories
are significantly different. As mentioned in Section IV, not all
trajectories are useful in constructing an airport route network.
We have discussed it in the Framework Section. Figure 4
illustrates all the classification result from the dataset.

In order to validate the effectiveness of our proposed
solution, we evaluate our estimated result with the ground
truth we extracted from aviation official website. Since the
website only lists the take-off call sign and landing take-
off, we can only validate the accuracy of landing trajectory
estimation and take-off trajectory estimation. The confusion
matrix of classification result is shown in Fig. 5. We can
find that our trajectory classification performance is good. The

(a) Parking trajectory (b) Patrolling trajectory

(c) Landing trajectory (d) Take-off trajectory

Fig. 4. Four classes of aircraft trajectories at airport from step 1.2 in data
preprocessing.

accuracy of the landing trajectory is 86% and take-off is 98%,
which indicates our simple classification method performance
good enough for the following clustering solution. Especially
we only focus on landing and take-off trajectory map, the
error which classifying landing to take-off is only 1% and
classifying the take-off to landing is only 0.8%.
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Fig. 5. Confusion matrix of trajectory classification.

C. Evaluation of the Output Airport Map

In this section, we evaluate the quality of the map generated
by our approach. We use both the state-of-art evaluation matrix
proposed by Mahdi Hashemi [39] and some criteria particular
to the characteristics of aircraft trajectory data.

1) Compression Ratio: Our approach aims to extract the
on-ground aircraft trajectory map from a massive number
of GPS points. Most existing GPS points are irrelevant for
constructing the route network. We only retain key points and
meaningful GPS points in the graph. The goal is to use a small
number of vertices and trajectories to construct the airport
route network of aircraft. Therefore, a ratio of the number of



GPS points in the raw dataset to constructed graph vertices
is necessary to calculate. Since our algorithm are incremental,
we would like to evaluate the ratio with increasing number
of trajectories and GPS points. We evaluated the compression
ratio in two aspects: 1) the ratio and number of trajectories
we use and 2) the vertices and number of raw data points.

Figure 6 shows the compression ratio of vertices used to
the raw GPS points in our approach. Figure 6a indicates that
the compression ratio decreases with increasing number of
trajectories. This is because most new trajectories are merged
with previous ones as the route network graph expands. It also
shows that with increasing numbers of trajectories used for
updating the route network, our method needs fewer vertices
to represent a new trajectory. Figure 6b shows the relationship
between the number of GPS records used in our approach and
the vertices in the constructed route network. The gradient of
the line is the compression ratio. It shows that the gradient
slight decrease with more GPS point used.
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Fig. 6. Compression ratio.

2) Visual Comparison of Results: One direct and simple
approach to assessing the result and estimating the perfor-
mance of the algorithm is to visually compare the constructed
map and a ground truth map. For this purpose, we present the
construction result for an airport tarmac and runway map in
Figure 7. Figure 7a is the map drawn by our hand. Figure
7b shows the generated map. It is difficult to to distinguish
two figures from vision view, which indicates our result can
represent the raw route network well.

(a) Ground truth map (b) Generated route network

Fig. 7. Comparison of ground truth map and incrementally generated route
network.

Figure 8 illustrates an example of comparing trajectories

with raw data to newly generated graph with map matching.
There are three trajectories in Figures 8a and 8b with IDs 9,
28 and 73. We use the different colour to denote the differ-
ent trajectories. Figure 8c, 8d, and 8e shows the difference
between original trajectories and map matching result in the
newly generated graph. Figure 8g and Figure 8f show the local
details of original trajectories and the map matching result.

(a) Example of trajectories in raw
GPS data

(b) Example of trajectories in gen-
erated route network

(c) Trajectory 9 in
the raw GPS data and
newly generate route
network

(d) Trajectory 28 in
the raw GPS data and
newly generate route
network

(e) Trajectory 73 in
the raw GPS data and
newly generated route
network

(f) Local difference between dis-
tinct trajectories in the raw GPS
data

(g) Difference between distinct tra-
jectories in generated route net-
work

Fig. 8. An example of trajectories in raw GPS data and in a newly generated
route network.

We present the construction process step-by-step in Figure
9. It shows the construction process with the addition of 30
to 270 trajectories. We can see that new routes are discovered
as more trajectories are added in. As more trajectories are
used in updating process, fewer routes are constructed with
the same number of new trajectories, which also matches our
compression ratio result: the compression ratio improves with
more trajectories. This is because fewer vertices are needed
to represent the same number of trajectories in a larger route
network graph.

3) Evaluation metric: Hashemi et.al. proposed two quanti-
tative metrics including completeness and precision to evaluate
the quality of constructed route network [39]. We apply these
two metrics to evaluate our results in this section.

The completeness metric shows how well the new route
network covers the ground truth. The metric uses distances
to match the segments in new constructed route network and



(a) 30 trajectories (b) 60 trajectories (c) 90 trajectories

(d) 120 trajectories (e) 150 trajectories (f) 180 trajectories

(g) 210 trajectories (h) 240 trajectories (i) 270 trajectories

Fig. 9. An example of trajectories in raw GPS data and in a new generated
route network.

segments in ground truth. The distance calculation method is
shown in their paper [39]. For each segment in constructed
route network, they are matched with the closed segment in
ground truth. The length of matched segments in ground truth
is denoted as l and the total length of segments in ground
truth is L. The completeness is calculated as completeness =
l/L. The precision metric indicates how close the constructed
segments are to the ground truth counterparts. We use the
average distance between matched segments to measure the
precision.

Figure 10a shows the completeness with increasing number
of trajectories and Figure 10b shows the precision metric.
Here, we calculate the completeness metric based on the
same ground truth route network. The completeness increases
with more trajectories used because the more routes has been
constructed by more trajectories. We can also find that the
increase rate decreases slightly because the route information
that new trajectories can provide is less than the trajectories
used for route network construction. Many trajectories offer
redundant route information if the trajectory can be map
matching in the graph. The ground truth map is constructed by
hand with observation of around 400 trajectories. Using 300
trajectories to construct the route network, the completeness
achieved around 93%. The precision metric calculates the
average distance between the constructed route network and
matching ground truth graph. The range of distance is between
7 to 9 meters. That is, for each segment in constructed graph,
we calculate the distance between each vertices in this segment
and corresponding segment in the ground truth map. The
average distance between those segments is the precision. We

find that the precision become better with more trajectories,
which suggests that more trajectories can boost the precision
of location of segments in the constructed route graph.
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Fig. 10. Evaluation metric with incremental updating approach from LAX
dataset for the different number of trajectories used.

4) Running Time: We tested our framework on a PC with
a 3.3GHz Intel Core i7 processor and 32GB RAM. We imple-
mented the program in R [40]. Table III shows the running
time of each part of our framework for the Los Angeles
International Airport. Except for data preparation time, the
total updating time was only around 45 seconds. If we use
high performance languages such as C++ or Java, calculation
could be made in real-time

TABLE III
RUNNING TIME OF LOS ANGELES INTERNATIONAL AIRPORT DATASET

Description Value
#GPS points 1,080,059
#Trajectories 2,165
Data cleaning 45.38s
Trajectory classification 0.28s
Incremental updating 44.72s
Total running time approx. 90s

VII. CONCLUSIONS

In this paper, we propose an incremental approach to
construct on-ground aircraft map at Los Angeles International
Airport from massive amount of GPS data. We formulate
the on-ground aircraft trajectory map creation and updating
problem, provide the approach to clean, and process huge
volumes of on-ground aircraft GPS data. We classify aircraft
trajectory into four categories: parking, patrolling, landing
and take-off using a simple solution. We also propose a
new clustering algorithm to merge existing routes and add
new routes with new coming trajectories, which is able to
update the map in time. We conducted an extensive experi-
ment on a large amount of aircraft trajectory data from Los
Angeles International Airport to demonstrate the effectiveness
in three aspects: compression ratio, visualisation comparison
and evaluation metric. Our work still has some limitations.
In the future, we will explore more incremental clustering
methods and extend this framework to construct other types
of trajectory map. We also plan to test our proposed solution
to other airports and similar scenarios.
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